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ABSTRACT 
 
 

his paper studies the N -player gambler’s ruin with 
variable bet size, that is, more than one chip may be 
transferred from one player to another. Weighted 
directed multi- graphs were constructed to describe 
the transitions between chip states. Linear systems 

were constructed based on the connections between nodes in 
these graphs. Solutions for the placing probabilities of each 
player are obtained from these linear systems. Expected time 
until ruin is solved by modeling the game as a Markov process. 
A numerical algorithm was developed to solve the N -player 
gambler’s ruin with variable bet size for any positive integer 
chip total. Compared with the classic N -player gambler’s ruin, 
game durations are expected to be shorter due to the nature of 
bet sizes allowed in this model. Expected time until ruin and 
placing probabilities for All-In betting games are shown to be 
dependent only on the wealth proportion of the players. 
 
 
INTRODUCTION 
 
Consider a game with N players having initial wealths S1, S2,..., 
SN. The N -player gambler’s ruin problem is finding each 

player’s winning probability and the game’s expected duration 
with the assumption that they are playing a fair game. The N -
player game has several variations based on the players involved 
in each betting round, and how winners and losers are selected 
in these rounds. One of the common variants is the N -tower 
game, where each round has one winner and one loser. Each 
game involves exactly two of the N players, say Players i and j, 
each with an equal probability of winning the game.  The players 
are paired randomly with equal probabilities, so that each pair 
has a probability !

"("$%)
 of being selected. In the classic (or Unit 

Bet) variant, bet size is fixed to 1 unit for each game. In this 
paper, we will focus on variants where players can wager up to 
their whole wealth, depending on the wealth of their opponent. 
These variants are the All-In and No Limit (or “occasionally all 
in”) variations, as described in a paper by Diaconis and Ethier 
[6]. 
 
In the past years, several models have been used in solving the 
N -player gambler’s ruin where N > 2. In three-player problems, 
first studied by Bachelier in 1912 [2], the player’s winning 
probability is solved by recursion and is given by the proportion 
of that player’s wealth to the total wealth of the three players 
involved in the game. E Kim (2005) discussed further results for 
the three-player problem, including poker applications [3]. 
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Playing strategies were studied to determine optimal results 
depending on the payout structure of the tournament. David 
(2015) used multigraphs and recursions in solving the three-
player problem [4]. VVVX# = '(!("(#

(!)(")(#
	[2,	7,	16,	17].	Stirzaker 

introduced solutions using martingales in this area of research 
[16]. Swan and Bruss (2006) described a matrix-analytic 
approach in solving the N -player problem [18], wherein they 
solved for ruin probabilities for each player. Diaconis et al. 
(2020) estimated gambler’s ruin on finite inner uniform domains, 
with the three-player problem as an example [5]. Marfil and 
David (2020) used weighted directed multigraphs and recursions 
in solving the four-player problem [13] and eventually 
generalized the solution for the N -player problem [14]. Diaconis 
and Ethier (2022) discussed several methods of approximating 
gambler’s ruin probabilities [6]. While exact computations are 
feasible for small wealth totals, these Markov chain methods 
seem difficult for values of practical interest. Ganzfried and 
Sandholm (2008) studied N -player gambler’s ruin with all-in 
betting with applications in the poker context [9]. 
	
The main purpose of this paper is to solve the placing 
probabilities of each player for the N -player gambler’s ruin 
problem with varying bet sizes (No Limit and All-In variants) 
and N > 3. Here, placing probabilities refer to a player’s 
probability of finishing in first, second, up to the last place. 
Specifically, the paper aims to accomplish the following. First, 
we will construct a weighted directed multigraph for the N -
player game variants with prescribed total wealth S. From this, 
we will construct an appropriate linear system that represents the 
multigraph for each game variants. We will then use a numerical 
algorithm for solving placing probabilities for each game variant. 
We will present a method for calculating the expected time until 
ruin for each game variant. Finally, we will compare our results 
with existing results for the classic N -player game variant. 
 
  
MATERIALS AND METHODS 
 
Weighted directed multigraphs will be used to model transitions 
between states given the players’ initial wealths. Variables for 
the players’ placing probabilities will be assigned to each unique 
state. The system of equations relating these variables will then 
be solved. The problem will be modeled using an absorbing 
Markov chain in order to calculate the expected time until ruin, 
as shown in Section 2.4. For definitions of weighted directed 
multigraphs and absorbing Markov chains, please see previous 
papers by Marfil and David, and Grinstead’s Introduction to 
Probability [13, 15, 10]. 
 
Definition of States 
This paper aims to calculate placing probabilities for the N 
players given their initial wealths. Probabilities of placing first 
are just the proportions of the players’ initial wealths to the total 
wealth in play [2]. We are left to calculate the remaining placing 
probabilities for each player, which we accomplish using a 
numerical algorithm (in Matlab) described in this section. We 
first present the following. 
 
Definition 1 A chip state is an ordered N-tuple (S1,	S2,	...,	SN), 
where 1%, 1!, … , 1" ∈ 	ℕ ∪ {0} and 1% ≥ 1! ≥	… ≥ 1" . The 
coordinates of a chip state represent the wealths of each player 
at a given time. 
 
Definition 2 A chip position is a coordinate of a chip state (S1,	
S2,	 ...,	 SN). Each position in a chip state has corresponding 
placing probabilities. 
 

Definition 3 A terminal state is a chip state where at least one 
chip position is zero. Placing probabilities for each player for 
terminal states can be solved based on the solutions to the (N	−	
1)-player gambler’s ruin problem. 
 
Definition 4 A nonterminal state is a chip state with N positive 
chip positions. 
 
Definition 5 In a betting round involving players with wealths x 
and y, for the No Limit game variant, the permissible bet sizes 
are elements of the set {1, 2, . . . , min{x, y}}, or natural numbers 
less than or equal to the number of chips in the smaller stack 
involved in the betting round. For the All-In game variant, the 
bet size is min{x, y}. 
 
Two players are selected randomly using a uniform distribution, 
and these players face each other in an even-money betting 
round. Without loss of generality, let the two players be Players 
1 and 2 having wealths x and y, respectively. For the All-In 
variant, the bet size n is min{x, y}. For the No Limit variant, the 
bet size n is selected randomly using a uniform distribution from 
the set of permissible bet sizes {1, 2, . . . , min{x, y}}. The winner 
of the round is selected randomly, and that player adds to his 
stack n chips taken from the other player’s initial stack. For 
example, if Player 1 wins over Player 2, their new chip stacks 
will be A	 + 	C  and D − C , respectively. Upon reaching a 
terminal state, a chip state of the form (E, F, 0), second place 
probabilities can be solved trivially. Upon reaching a 
nonterminal state, the process is repeated. 
 
We use the following definition for the mapping for the N -
player gambler’s ruin. 
 
Definition 6 Consider a nonterminal state (S1,	S2,	...,	SN) for the 
N-player gambler’s ruin for a given wealth total S. The possible 
states after one round of betting are of the form: 
 

(S1,	S2,	...,	Si+nij,	...,	Sj−nij,	...,	SN), 
 
where G, H, ∈ {1, 2, . . . , I}, G ≠ H and nij is the bet size. For the 
All-In variant, each state has probability %

"("$%)
 of being 

selected. For the No Limit variant, each state has probability 
%

"("$%)*
 of being selected, where m is the maximum permissible 

bet size between the players participating in the round. 
 
Construction of Multigraph 
Let S be the total wealth of the N players. We construct the 
weighted directed multi- graph using the following algorithm: 
 

1. Unique states (S1,	S2,	...,	SN) are generated such that 1 =
1% + 1! + ⋯+	1"  and  1% ≥ 1! ≥ 	… ≥ 1" . The 
unique states will serve as the nodes in the graph. By 
convention, states are arranged in columns 
according to their last coordinates. 
 

2. Terminal states (with exactly one zero coordinate) 
are put on the leftmost column, with the states 
arranged in decreasing order of the first coordinates. 

 
3. States with the last coordinate equal to 1 are then 

put on the next column, with the states also arranged 
in decreasing order of the first coordinates. 

 
4. The process of constructing this lattice is repeated 

until all states are exhausted. 
 

5. Given a nonterminal state (S1,	S2,	...,	SN), if it is 
possible for the chip stacks to become (R1,	R2,	...,	RN) 

(1) 
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after one round of betting, an edge directed from (S1,	
S2,	...,	SN)   to (R1,	R2,	...,	RN) is constructed, with weight 
as defined in 6, so that the total weight of all outward 
edges from a nonterminal state must be 1. 

6. Loops may be constructed if a state goes to itself (up 
to permutation of coordinates) after one round. 
Multiple edges between a pair of nodes may also be 
constructed if there are multiple possible ways of 
transitioning between these state pairs. 

 
Construction of Linear System 
For the N -player gambler’s ruin for a given wealth total 
S, we construct the linear system using the following 
algorithm: [15] 
 

1. Variable assignment 
A variable will be assigned to each of the unique chip 
positions from all terminal and nonterminal states in 
the order they are generated in 2.2. 
 

2. Construction of transition matrix Q 
If n is the number of unique chip positions from all 
nonterminal states, an C × C matrix Q representing the 
transitions among nonterminal chip positions is 
constructed. 
 

3. Construction of transition matrix R 
If m is the number of unique chip positions from all 
terminal states, an C × O  matrix R representing the 
transitions from nonterminal to terminal chip 
positions is also constructed. 
 

4. Computation of entries of matrices Q and R 
For each of the n variables corresponding to nonterminal 
positions, we determine where the corresponding chip 
positions are being moved. 
 

5. Set up of linear system 
We set up and solve the linear system 
 

(I	−	Q)B	=	R,	
 
where B is the absorption probability matrix, an 
C ×O matrix containing the probabilities for the n 
unique nonterminal chip positions of ending up in the 
m unique terminal chip positions. 
 

6. Recursion for (I − 1)-player gambler’s ruin 
After solving for matrix B, we construct the terminal 
placing probability matrix W, an O × I  matrix 
containing the placing probabilities for the 
corresponding terminal positions in the N -player game. 
We do this by recursively applying the above algorithm 
to the (I − 1)-player gambler’s ruin until we reach 
the two-player case. Specifically, matrix W is obtained 
by adding rows for zero positions and a column for Nth 
place probabilities to the matrix BN−1, or the 
absorption probability matrix for the (I − 1)- player 
case. 
 

7. Computation of placing probabilities 
Finally, we recursively solve up to the given N to find 
the placing probability matrix BW, which contains the 
final placing probabilities. 
 

Given total wealth S, one can solve for m and n using integer 
partitions [1] and recurrence relations. These equations are 
shown in a paper by Marfil and David but no closed formulas 
were provided for m and n [14]. 

Calculation of Expected Time until Ruin 
In the N-player gambler’s ruin, time until ruin is the number of 
games played by the players until one player reaches zero 
wealth. Recall that an absorbing Markov chain P has the 
following canonical form: 
 

T = UV W
X Y

Z 

 
where Q represents the transitions among nonterminal states, R 
represents the transitions from nonterminal states to terminal 
states, and I represents the transitions among terminal states. 
For the canonical form of the matrix, we use matrices Q and R 
as constructed in Section 2.3, while I	 is an m-by-m identity 
matrix. 
 
In modeling this problem as an absorbing Markov chain, the 
chain is absorbed when one of the N players is ruined. Hence, 
the expected time until ruin is equal to the time until absorption 
of the chain. We use the fundamental matrix [ = (\ − ])$% of 
the absorbing Markov chain P, with the existence of the former 
guaranteed [10, 15]. Consequently, this also guarantees the 
existence of solutions for our linear system for ruin probabilities. 
The expected time until ruin is evaluated using the following 
theorem [10]. 
 
Theorem 1 Given an absorbing Markov chain P with N as its 
fundamental matrix, and P starts in state si, let Ti be the 
expected number of steps before the chain is absorbed. Let T be 
the column vector whose ith entry is Ti. Then 

T	=	N	·	1,	

where 1 is the column vector whose entries are all 1. 

The following theorem tells us how absorption probabilities are 
obtained using the fun- damental matrix of an absorbing 
Markov chain [10, 13, 15]. 

Theorem  2  Let bij  be the probability that an absorbing chain 
will be absorbed in the ab- sorbing stateasj  if it starts in the 
transient state si.  Let B be the matrix with entries bij. Then B is 
a b × c	matrix, and 
 

B	=	NR,	

where N is the fundamental matrix and R is as in the canonical 
form. 
 
 
RESULTS 
 
In general, for any positive integer S, the system can be modeled 
as a multigraph with loops where vertices are unique states up 
to permutations and directed edges represent the transitions 
between states. 
 
Multigraph Theorems 
The following theorems describe the connections between a 
nonterminal state (S1,	 S2,	 ...,	 SN) and some nonterminal and 
terminal states. 
 
Theorem 3 For the N-player No Limit gambler’s ruin for a 
given wealth total S, given a nonterminal state (S1,	S2,	...,	SN), 
where 1 = 1% + 1! +⋯+	1" and  1% ≥ 1! ≥	… ≥ 1" ≥ 1, it 
is connected with edge weights %

"("$%)*
 to states of the form 

 
 

 

(2) 

(3) 

(4) 

(5) 
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(8) 

(9) 

(10) 

 
(S1,	S2,	...,	Si+nij,	...,	Sj−nij,	...,	SN),	

 
where G, H, ∈ {1, 2, . . . , I} , G ≠ H  and m	 =	 min{Si,	 Sj} is the 
maximum permissible bet size, and  C+, ∈ {1, 2, . . . , O} is the bet 
size. The chip positions are rearranged in decreasing order to 
get a valid chip state. 
 
Proof: Let (S1,	S2,	...,	SN) be a nonterminal state. Since players 
are selected randomly using a uniform distribution and there is 
a winner and a loser in each round, there are N ways of selecting 
a winner and I − 1 ways of selecting a loser from the remaining 
players. Suppose Player i is selected as the winner, while Player 
j is selected as the loser. In each round, the maximum 
permissible bet size is m	=	min{Si,	Sj}, with the winner gaining 
nij chips from the loser. Then from Definition 6, the transition 
after one round is 
 
(S1,	S2,	...,	Si,	...,	Sj,	...,	SN)	→	(S1,	S2,	...,	Si+nij,	...,	Sj−nij,	...,	SN).	

 
Since there are I	(I − 1)  ways of selecting these pairs of 
players, each with equal probability,  and there are m possible 
bet sizes, each outward edge from this nonterminal state has 
weight %

"("$%)
. 

 
Theorem 4 For the N-player All-In gambler’s ruin for a given 
wealth total S, given a nonterminal state (S1,	S2,	...,	SN), where 
1 = 1% + 1! +⋯+	1"  and  1% ≥ 1! ≥	… ≥ 1" ≥ 1 , it is 
connected with edge weights %

"("$%)
 to states of the form 

 
(S1,	S2,	...,	Si+nij,	...,	Sj−nij,	...,	SN),	

 
where G, H, ∈ {1, 2, . . . , I}, G ≠ H and nij	=	min{Si,	Sj} is the bet 
size. The chip positions are rearranged in decreasing order to 
get a valid chip state. 
 
Proof:  The proof follows similarly with fixed bet size nij	=	
min{Si,	Sj} for a pair of players Si and Sj. Since there’s only one 
possible bet size for each pair of players and there are I	(I −
1) equally probable ways of selecting these pairs of players, 
each outward edge from this nonterminal state has weight 

%
"("$%)

. 
 
Four-Player Game for S=6 
Example 1 In this example, we take a more detailed look at the 
four-player results for S = 6. There are two ways of distributing six 
units of wealth to four players such that all of them have positive 
integer wealth totals: (3, 1, 1, 1) and (2, 2, 1, 1), up to permutation of 
elements. There are also three ways of distributing six units of wealth 
to four players such that all of them have nonnegative integer wealth 
totals, with one player having zero wealth: (4, 1, 1, 0), (3, 2, 1, 0) and 
(2, 2, 2, 0), up to permutation of elements. We look at the graph for the 
four-player No Limit game with total wealth S = 6, as shown in Fig. 1. 
 

 
Figure 1: Multigraph for N	=	4, S	=	6 No Limit game 

In this example, the unique terminal states are (4, 1, 1, 0), (3, 2, 
1, 0) and (2, 2, 2, 0), de- noted by P1, P2, and P3, respectively. 
The unique nonterminal states are (3, 1, 1, 1) and (2, 2, 1, 1), 
denoted by P4, and P5, respectively. From these states, we 
observe that there are four unique chip positions in nonterminal 
states and 9 unique chip positions in terminal states. Also, notice 
that edges have weights 1/6 or 1/12. This difference in edge 
weights occurs due to the different permissible bet sizes in each 
scenario. Four loops are present for the state P5 since it can 
transition to itself if Player 3 or 4 beats Player 1 or 2 for one 
chip. After the construction of a multigraph for a given wealth 
total S, a linear system rep- resenting the transitions between the 
states is constructed, as detailed in Section 2.3. For example, if 
S	=	6, we define four variables v1, v2, v3, and v4 corresponding 
respectively to the unique nonterminal chip positions 3 and 1 in 
P4, and positions 2 and 1 in P5. We also define nine variables w1, 
w2, up to w9 for terminal states, corresponding respectively to 
the chip positions 4, 1, and 0 in P1, positions 3, 2, 1, and 0 in P2, 
and positions 2 and 0 in P3. 
 
We get the linear system by setting up the recurrence: 
 

-.! −
1
12
2
0 0 3 0
0 0 1 2
0.5 0.5 2 2
0 1 2 2

789 =
1
12
2
3 0 0 6 0 0 0 0 0
0 2 1 0 2 2 2 0 0
0.5 0 0.5 2 2 0 0 2 0
0 1 0 0 0 2 2 1 1

7 

 
The solution to this system is an C × O  matrix that gives the 
absorption probabilities for the n unique nonterminal chip positions 
into the m unique terminal chip positions.        
 
This system has the following solution: 
 

! = 1
12 %

0.26660 0.0088 0.0149 0.5599 0.0564 0.0144 0.0144 0.0589 0.0056
0.0079 0.1906 0.0918 0.0284 0.1963 0.2102 0.2102 0.0449 0.0196
0.0665 0.0352 0.0596 0.2396 0.2256	 0.0.057 0.0.057 0.2355 0.0226
0.0141 0.1261 0.0211 0.0508 0.0647 0.2326 0.2326 0.1516 0.1065

0 

which means that for v1 (3 in P4), its probability of ending up in 
the terminal chip position w1 (4 in P1) is 26.66%, and so on. Note 
that w3, w7, and w9 represent ruined chip positions for the four-
player game. This implies that v1’s ruin probability is given by 
the sum 
 

B1,3	+	B1,7	+	B1,9	=	3.49%.	
 
To calculate the players’ placing probabilities, we need the 
solutions to the three-player problem for S = 6. The graph for 
the three-player game with total wealth S = 6 is shown in Fig. 2. 
 

 
Figure 2: Multigraph for N	=	3, S	=	6 No Limit game 

The algorithm applied previously is then applied recursively to 
this three-player game. As shown by Marfil and David (2021) 
[15], the absorption probabilities for three players are given by 
the matrix 

(6) 

(7) 
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(11) 

(14) 

(15) 

(16) 

(17) 

(13) 

(12) 

< =

⎣
⎢
⎢
⎢
⎢
⎡
0.3843 0.0112 0.0136 0.4362 0.0343 0.0295 0.0847 0.0062
0.0124 0.1989 0.1977 0.0319 0.2329 0.2353 0.0486 0.0423
0.1528 0.0336 0.0409 0.3087 0.1029 0.0884 0.2540 0.0187
0.0553 0.0505 0.1215 0.1185 0.2617 0.1197 0.2251 0.0476
0.0192 0.1431 0.0649 0.0728 0.1354 0.2918 0.0663 0.2064
0.0379 0.0379 0.0379 0.2500 0.2500 0.2500 0.0909 0.0455⎦

⎥
⎥
⎥
⎥
⎤

 

 
while a corresponding matrix 
 

		 	 1 2 3 

% =

5
1
0
4
2
0
3
0 ⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡5/6 1/6 0
1/6 5/6 0
0 0 1
2/3 1/3 0
1/3 2/3 0
0 0 1
1/2 1/2 0
0 0 1⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎤

 

 
 
has entries which are the placing probabilities for each nonterminal 
chip position in the three-player game. Note that the elements of 
matrix X are obtained from the two-player  base case wherein a 
player’s win probability is just the proportion of that player’s wealth to 
the total wealth of both players. 
 
The placing probabilities for the three-player game are the 
elements of the matrix shown in Eq. (13): 
 

	 1								 				2 												3 

2% =

4
1
3
2
1
2 ⎣
⎢
⎢
⎢
⎢
⎡0.6667 0.2840 0.0493
0.1667 0.3580 0.4753
0.5000 0.3520 0.1480
0.3333 0.3779 0.2888
0.1667 0.2702 0.5632
0.3333 0.3333 0.3333⎦

⎥
⎥
⎥
⎥
⎤
 

 
 
From this matrix, we get matrix W for the four-player game by 
adding rows for zero positions and a column for fourth place 
probabilities, as shown in Eq. (14): 
 

																1															2															3											4 

7 =

4
1
0
3
2
1
0
2
0 ⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡0.6667 0.2840 0.0493 0
0.1667 0.3580 0.4753 0
0 0 0 1

0.5000 0.3520 0.1480 0
0.3333 0.3779 0.2888 0
0.1667 0.2702 0.5632 0
0 0 0 1

0.3333 0.3333 0.3333 0
0 0 0 1⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 

 
 
 
 
 
 

Finally, using B in Eq. (9) and W in Eq. (14), we get matrix BW, 
whose entries are the placing probabilities for each nonterminal chip 
position in the four-player game. This matrix is shown in Eq. (15):  
 

																1															2															3											4 

87 =
3
1
2
1
9
0.5000 0.3208 0.1443 0.0350
0.1667 0.2264 0.2852 0.3217
0.3333 0.2952 0.2316 0.1399
0.1667 0.2048 0.2684 0.3601

: 

 
 
In calculating the expected time until ruin, we use the 
fundamental matrix for N	=	4 and S	=	6: 
 

[ = l\G −
1
12
m

0 0 3 0
0 0 1 2
0.5 0.5 2 2
0 1 2 2

op

$H

 

 
Hence, 

q = [m

1
1
1
1

o = m

44/31
44/31
52/31
52/31

o 

which gives the expected time until ruin for the nonterminal 
states for S	=	6. This means that the expected time until ruin for 
the states (3, 1, 1, 1) and (2, 2, 1, 1) are 44/31 and 52/31 time 
steps, respectively. 
 
Example 2 For comparison, the graph for the four-player All-In 
game with total wealth S	=	6 is shown in Fig. 3. 
 

 
Figure 3: Multigraph for N	=	4, S	=	6 All-In game 

Notice that all edges have the same weight 1/12 since each 
possible player pair yields only two possible outcomes each. 
This means that multigraph construction is easier for All-In 
cases than for No Limit cases, where edge weights vary due to 
different possible bet sizes. 
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(18) 

Applying the same algorithm in Example 1, matrix BW in Eq. 
(18) below contains the placing probabilities for each 
nonterminal chip position in the four-player All-In game: 
 

																1															2															3											4 

;<

=
3
1
2
1
9
0.5000 0.3382 0.1336 0.0282
0.1667 0.2206 0.2888 0.3239
0.3333 0.3156 0.2384 0.1127			
0.1667 0.1844 0.2616 0.3873

: 

 
 
Computing the expected time until ruin for the states (3, 1, 1, 1) and (2, 
2, 1, 1) yields 22/15 and 28/15 time steps, respectively. These are 
shorter expected times compared with the No Limit game since there 
is a higher probability of player ruin due to the nature of betting. 
 
Expected Time until Ruin 
Table 1 shows the expected time until ruin for S	=	5,	6,	7 and 8 
for the Unit Bet, No Limit, and All-In four-player gambler’s ruin 
scenarios. 
 
Table 1: Expected Time Until Ruin for States with N	=	4 and S	=	5, 
6, 7 and 8 

  Expected Time Until Ruin 
S	 State Unit Bet No Limit All-In 
5 (2,1,1,1) 1.333333 1.333333 1.333333 
6 (3,1,1,1) 1.466667 1.419355 1.375000 
 (2,2,1,1) 1.866667 1.677419 1.500000 
 (4,1,1,1) 1.528090 1.456311 1.401709 
7 (3,2,1,1) 2.112360 1.825243 1.606838 
 (2,2,2,1) 2.741573 1.941748 1.333333 
 (5,1,1,1) 1.559578 1.476520 1.424419 
 (4,2,1,1) 2.238311 1.906079 1.697674 
8 (3,3,1,1) 2.437406 1.922619 1.546512 
 (3,2,2,1) 3.193062 2.204092 1.639535 
 (2,2,2,2) 4.193062 2.102046 1.000000 

 
Expected time until ruin for all three variations are calculated by 
getting the sum of row entries in the corresponding fundamental 
matrix N for each wealth total. An example of this is shown in 
Eq. 17 for states with S	=	6. 
 
Observe that for any state, the expected time until ruin for the 
Unit Bet variation is always the largest, while the All-In 
variation has the smallest expected time until ruin. This is true 
because of the difference in nature of the transfer of wealth 
between pairs of players in each round of the three cases. For the 
Unit Bet variation, exactly one chip is transferred between the 
players in each round. This means that if all players have more 
than one chip, it is impossible for a player to run out of chips in 
a single round. Only players with one chip at the start of the 
round are at risk of being ruined immediately. States of this form 
are sometimes called near-terminal states since they can go to a 
terminal state in a single step. For the No Limit variation, more 
than one chip may be transferred between the players, with the 
bet size chosen uniformly. In fact, all the chips of the player with 
the smaller wealth may be transferred to the other player in a 
single round. This results in a higher probability of player ruin 
in a single round. Hence, a player may achieve ruin faster, 
leading to a lower expected time until ruin. Also, if the two 
players involved in the round have equal wealth totals, each of 
them has a nonzero probability of achieving ruin in a single 
round. Lastly, for the All-In variation, the smaller stack in each 
round is always at risk of being ruined immediately. Moreover, 
if the two players involved in the round have the same stack, one 

of them will certainly be ruined after that round. This leads to 
the shortest expected time until ruin among the three variations. 
In fact, if all players have the same wealth total at the start of the 
round, any combination of players will lead to a player being 
ruined after that round, leading to the shortest expected ruin time 
of 1 time step. This is in contrast to the Unit Bet scenario where 
the case of all players having equal wealth always leads to the 
largest expected ruin time among all possible cases for that 
wealth total. 
 
Table 2 shows the expected time until ruin for S	=	12 for the 
Unit Bet, No Limit, and All-In four-player gambler’s ruin 
scenarios. 
 
Table 2: Expected Time Until Ruin for States with N	=	4 and S	=	
12	

 Expected Time Until Ruin 
State Unit Bet No Limit All-In 

(9,1,1,1) 1.598230 1.494194 1.429599 
(8,2,1,1) 2.392919 1.976777 1.718396 
(7,3,1,1) 2.832561 2.130154 1.741366 
(6,4,1,1) 3.062454 2.197816 1.763273 
(5,5,1,1) 3.134625 2.175915 1.621409 
(7,2,2,1) 3.749197 2.428346 1.710345 
(6,3,2,1) 4.518483 2.678824 1.856213 
(5,4,2,1) 4.872647 2.747851 1.864226 
(5,3,3,1) 5.433894 2.793086 1.740148 
(4,4,3,1) 5.725927 2.827240 1.708725 
(6,2,2,2) 6.004048 2.749855 1.375000 
(5,3,2,2) 7.230028 3.111520 1.715134 
(4,4,2,2) 7.621062 3.101327 1.500000 
(4,3,3,2) 8.512561 3.272736 1.739080 
(3,3,3,3) 9.512561 3.021941 1.000000 

 
Note that the states are arranged in increasing order according to 
the fourth coordinates, then the third coordinates, and then the 
second coordinates. Observe that the expected time until ruin for 
the Unit Bet case is increasing as we go down the column. Recall 
that the expected time until ruin for a state (A, B, C) in the three-
player Unit Bet case is given by the formula # = 'IJK

I)J)K
 [2, 7, 

16]. In this formula, expected time until ruin is maximized when 
all players start with equal wealths. Although no formula and 
proof has been obtained for expected time until ruin for the Unit 
Bet case for N	>	3 players, we can observe that the expected ruin 
time similarly increases as the wealth totals among players 
become more balanced. 
 
Now, observe that while the expected time until ruin for the No 
Limit case is generally increasing as we go down the column, 
there are some cases when the expected time decreases. For S	=	
12, let’s look at two specific states: (5, 5, 1, 1) and (6, 4, 1, 1). 
 
For the state (5, 5, 1, 1), notice that the top two players have the 
same wealth total. We compare this with the previous state (6, 4, 
1, 1), which has three non-equal positions. For the state (5, 5, 1, 
1), all players can be ruined in a single round. For example, the 
first and second players can be ruined if they face each other in 
the round, with bet size equal to 5. Players 3 and 4 can be ruined 
in any round. Calculating the probability of a player being ruined 
in one round, we have 2u %

%!
v u

%
L
v + 6 u

%
%!
v (1) =

M
%L

. For the 
state (6, 4, 1, 1), Player 1 has zero probability of being ruined in 
a single round since the maximum permissible bet sizes 
involving them is either 1 or 4. Only Players 2, 3 or 4 can be 
ruined in a single round. Calculating the probability of a player 
being ruined in one round, we have 1u %

%!
v u

%
N
v + 6 u

%
%!
v (1) =

!L
NM

, which is smaller than M
%L

. Hence, it is more likely that a player 
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is ruined in the first round for the state (5, 5, 1, 1), leading to a 
smaller expected time until ruin for this state. 
 
For the All-In case, observe that (3, 3, 3, 3) has the smallest 
expected ruin time, while the (6, 3, 2, 1) and (5, 4, 2, 1) largest 
expected ruin times. As discussed earlier, if all players have the 
same wealth total at the start of the round, any combination of 
players will lead to a player being ruined after that round, 
leading to the shortest possible ruin time. On the other hand, if 
all players have different wealth totals, only the smaller stack in 
each round is at risk of ruin in that round. Looking at all possible 
cases for S	=	12, only (6, 3, 2, 1) and (5, 4, 2, 1) have four 
different wealth totals for the players. Those with three different 
wealth totals (among four players) are in the next tier in terms of 
expected ruin time. 
 
Table 3 shows the expected time until ruin for some states of the 
form (4k, 3k, 2k, k) for the Unit Bet, No Limit, and All-In four-
player gambler’s ruin scenarios. 
 
Table 3: Expected Time Until Ruin for Some States of the Form 
(4k, 3k, 2k, k) 

 Expected Time Until Ruin 
State Unit Bet No Limit All-In 

(4,3,2,1) 4.150468 2.551239 1.825054 
(8,6,4,2) 16.720608 4.338951 1.825054 
(12,9,6,3) 37.669695 5.622064 1.825054 
(16,12,8,4) 66.998232 6.613142 1.825054 
(20,15,10,5) 104.706296 7.430748 1.825054 

 
For the Unit Bet case, as the wealth total increases while keeping 
the proportions con- stant, the expected ruin time increases 
almost proportionally. For the No Limit case, while expected 
ruin time increases with an increase in total wealth among 
players, the increase in ruin time is very small compared to the 
previous case. For the All-In case, if the wealth total increases 
while proportions among players are kept constant, the expected 
ruin time does not change at all. These differences in expected 
ruin time reflect the different bet sizes among the models. For 
the Unit Bet case, the bet size is fixed at 1 unit. Increasing the 
wealth totals but keeping the bet size at 1 unit clearly yields 
longer game durations. For the No Limit case, although the ruin 
time increases with the wealth total, the rate of increase is much 
slower since at least one player (the shorter stack) can be ruined 
in each round if the bet size is equal to their stack size. Lastly, 
for the All-In case, since the bet size is equal to the shorter stack 
between the selected players, increasing the wealth total yields 
larger bet sizes. This results in ruin time depending only on the 
wealth proportions and not on the total among players. 
 
Theorem 5 explains the existence of a lower bound and an upper 
bound for the expected ruin time for the All-In scenario. 
 
Theorem 5 For the N-player All-In gambler’s ruin for a given 
wealth total S, for any initial state, the expected time until ruin 
lies on the interval [1, 2]. 
 
Proof: Suppose N players have total wealth S, with each player 
having positive initial wealth. Clearly, the game takes at least 
one round since each player has positive wealth. Ruin is 
certainly achieved when each player has equal wealth, such that 
any pairing will result in one player losing their wealth in that 
round.   Hence, the greatest lower bound for expected ruin time 
is 1. On the other hand, the longest games are feasible when each 
possible pair has players with unequal wealth, with the shorter 
stack winning each round. In this case, the shorter stack has 0.5 
probability of being ruined in each round. For this scenario, if T 
is the ruin time, we have 
 
 

![#] = 0.5(1) + 0.51(2) + 0.52(3) + ⋯ = 01(0.5)3
4

356
= 2. 

 
Hence, the expected time until ruin lies on the interval [1, 2]. 
 
Comparison with ICM 
We compare the placing probabilities for some states of the form 
(4k, 3k, 2k, k) using the No-Limit model, All-In model, and the 
Independent Chip Model (ICM) [12], which is a widely used but 
simple approximation used in poker. Table 4 shows these 
placing probabilities. First place probabilities are the same for 
all models. Observe that the solutions obtained from the No 
Limit model depend on the actual number of chips of each player 
while the All-In model and ICM depend only on the proportion 
of the chip stacks, which means that all states of the form (4k, 
3k, 2k, k) where w ∈ ℕ have the same placing probabilities using 
either the All-In model or ICM. However, placing probabilities 
obtained using the All-In model and ICM are not equal. 
 
Table 4: Solutions for Some States of the Form (4k, 3k, 2k, k) 

State Position P	(Xi	=	1)	 P	(Xi	=	2)	 P	(Xi	=	3)	 P	(Xi	=	4)	
(4,3,2,1) 4 0.4000 0.3125 0.2055 0.0820 

(8,6,4,2) 8 0.4000 0.3052 0.2051 0.0896 

(12,9,6,3) 12 0.4000 0.3010 0.2047 0.0943 

(16,12,8,4) 16 0.4000 0.2982 0.2044 0.0974 

(20,15,10,5) 20 0.4000 0.2960 0.2042 0.0998 

All-In 4k 0.4000 0.2926 0.2101 0.0972 

ICM 4k 0.4000 0.3159 0.2063 0.0778 

(4,3,2,1) 3 0.3000 0.2937 0.2534 0.1530 

(8,6,4,2) 6 0.3000 0.2899 0.2506 0.1596 

(12,9,6,3) 9 0.3000 0.2875 0.2491 0.1634 

(16,12,8,4) 12 0.3000 0.2859 0.2481 0.1661 

(20,15,10,5) 15 0.3000 0.2847 0.2473 0.1680 

All-In 3k 0.3000 0.2702 0.2414 0.1884 

ICM 3k 0.3000 0.3083 0.2619 0.1298 

(4,3,2,1) 2 0.2000 0.2449 0.2918 0.2632 

(8,6,4,2) 4 0.2000 0.2468 0.2878 0.2654 

(12,9,6,3) 6 0.2000 0.2478 0.2857 0.2665 

(16,12,8,4) 8 0.2000 0.2485 0.2842 0.2673 

(20,15,10,5) 10 0.2000 0.2490 0.2832 0.2678 

All-In 2k 0.2000 0.2433 0.2667 0.2900 

ICM 2k 0.2000 0.2413 0.3175 0.2413 

(4,3,2,1) 1 0.1000 0.1674 0.2633 0.4693 

(8,6,4,2) 2 0.1000 0.1581 0.2565 0.4854 

(12,9,6,3) 3 0.1000 0.1636 0.2606 0.4758 

(16,12,8,4) 4 0.1000 0.1674 0.2633 0.4693 

(20,15,10,5) 5 0.1000 0.1703 0.2653 0.4644 

All-In k 0.1000 0.1939 0.2818 0.4243 

ICM k 0.1000 0.1345 0.2143 0.5512 
 
 
CONCLUSION 
 
In this paper, a method of solving placing probabilities for two 
variations of the N-player gambler’s ruin was presented. The 
assumptions for the problem were that betting was even-money 
with no draw, bet size is either the shorter stack or is uniformly 
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chosen among all permissible integer bet sizes, and the 
participating players for each round were selected randomly 
following a uniform distribution. The method used recursions 
with players having integer wealths at the start of each round. A 
multigraph for the different states for a fixed total wealth S was 
constructed and a linear system was constructed to represent the 
transition between these states. Solutions of this linear system 
give the absorption probabilities while placing probabilities can 
be obtained by applying the algorithm recursively. Expected 
time until ruin for any given state can be solved using this model, 
but a formula has yet to be obtained. Using the presented 
algorithm gives exact solutions to the problem, as opposed to 
numerical methods yielding approximations. Among the N-
player variations studied, only the All-In variation yields 
solutions depending only on the wealth proportions and not on 
the total wealth among all players. 
 
The model may be extended to one wherein the bet size selection 
may follow distributions other than the uniform distribution. 
This may lead to a better approximation of most poker 
tournaments since bet size between players usually belongs to 
the lower range of permissible bet sizes. The model may also be 
applied to other variations of the N-player game such at the 
player-centric and symmetric games. A formula for the expected 
time until ruin for I	 > 	3 for the Unit Bet, No Limit and All-In 
variants may be obtained. 
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